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gauge plus matter theory 
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France 
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Abstract. The two-dimensional version of a generalised Ising gauge theory in which the 
gauge part of the action involves a product of king link variables around every rectangular 
2 x 1 face of the lattice is studied. The pure gauge theory is related to  the Ising model 
and is self-dual. The gauge plus matter theory is also self-dual. For negative gauge coupling 
an king critical line in the (pg,  p,) plane separates a phase with staggered frustration from 
another which is homogeneously frustrated. 

1. Introduction 

Gauge theories in D dimensions are believed to be closely related to spin theories 
with the same symmetry group in D / 2  dimensions. The lower critical dimensionality 
is D, = 1 for spin theories and 0, = 2 for gauge theories with discrete symmetry groups 
whereas it is 2 and 4 for continuous symmetry groups (Wegner 1971, Balian et a1 
1975, Kogut 1979, Toulouse 1980, Pearson 1981). On hypercubical lattices the Ising 
pure gauge theory is self-dual in 4~ whereas the spin problem is self-dual in ZD (Wannier 
and Kramers 1941). In 3~ the gauge plus matter theory is self-dual and the pure 
gauge theory is related by duality to the Ising model. In ZD the pure gauge theory is 
trivial and the gauge plus matter theory is related to the Ising model in an external 
field. As a consequence there is no transition for finite values of the gauge coupling. 

All these results were obtained for a pure gauge part of the action involving four 
link variables around an elementary interaction loop (plaquette). Generalised lattice 
gauge actions involving larger interaction loops were recently proposed and studied 
in 3~ and 4~ (Edgar 1982, Bhanot et a1 1983). In the present work we look at the 
2~ version of one of these generalised lattice gauge actions involving the product of 
six Ising link variables around every rectangular face (window in the terminology of 
Bhanot et a1 (1983)) of the lattice. 

The action is given by 

The matter part, with coupling P,, involves Ising spins U = f 1 on the N sites and 
Ising gauge variables Uij on the 2N links of the square lattice. The gauge part, with 
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coupling Pg7 is a sum over the 2N windows (there is a one-to-one correspondence 
between windows and dual links) of gauge variable products (figure 1) 

(1.2) U0 0 = uij q k  u k i  V i m  urn, u n i .  

Figure 1. The gauge part of the generalised action involves a product of six link variables 
around every window. 

The action is invariant under Ising gauge transformations: 

ul + s 1 f f 1 7  U, + A,, = Sl v,s,, (1.3) 
where s, is an Ising variable associated with site i. With s, = - 1 and s, = + 1 V j  # i, we 
get a local gauge transformation 

f f l  + - f f l ,  U,, + - U,, Vi ,  (1.4) 

under which (1.1) is invariant. The partition function is also invariant under the change 
P, + - Pm, since changing ul into -U, on one of the two square sublattices gives back 
positive couplings on every link. In the following we shall restrict ourselves to the 
positive sector (P ,  > 0) of the phase diagram. 

The outline of the paper is as follows: in 9 2 the pure gauge theory (P ,  = 0) is 
related to the Ising model and as a consequence is self-dual whereas the mixed gauge 
theory 

where 

= uij 

is the usual gauge interaction involving four links around a plaquette, is related to the 
Ising model in an external field. The gauge plus matter theory is shown to be self-dual 
in 9 3. In 9 4 we show that the pure gauge critical point is unstable when a weak 
matter field is introduced. In 9 5 the Pg < 0 sector of the generalised gauge plus matter 
theory is examined. 

2. Pure gauge and mixed action theories: relation with the Ising model 

The partition function of the pure gauge model (equation (1.1) with Pm = 0) reads 

= ZN c n exP(BgUD0) (2.1) 
(U} OD 
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where the factor 2N comes from the sum over the non-interacting spins {a}. The 
modified gauge interaction U,, may be rewritten as the product of two nearby 
frustrations U, = * 1 (Toulouse 1977). Introducing Ising spins pa on the sites of the 
dual lattice such that 

the partition function becomes 

Z(Pg) = 22NZlsing(Pg) 

where 

is the Ising model partition function. A factor 2N has been included in equation (2.3) 
to take into account the gauge invariance of the { p }  configurations. The relation with 
the Ising model may be also obtained through a duality transformation on the pure 
gauge model. 

As a consequence of this relation the pure gauge theory is self-dual (the self-duality 
may be obtained directly on the pure gauge model) and has an Ising critical point at 

P , = P ~ = ~ I ~ ( I + V ‘ ~ ) .  (2.5) 

Besides the local Z 2  gauge symmetry, the pure gauge action is invariant under a global 
frustration reversal ( U, -+ - U, on every plaquette) and the second-order phase 
transition does not contradict Elitzur’s theorem (Elitzur 1975) since it is this global 
symmetry which is broken when Pg” P,. The frustration, a gauge invariant quantity, 
is the order parameter. The average frustration is zero below Pc and non-vanishing 
above: 

Since the transition has nothing to do with the local gauge invariance, the Wilson 
loop correlation function (Wegner 1971, Wilson 1974) 

G ( r )  = ( p U )  (2.7) 

which is the thermal average of the product of link variables around a loop r, follows 
an area law both above and below PC: 

G ( r )  - exp(-pAr) (2.8) 
where A r  is the loop area. 

This is easily verified through low- and high-temperature expansions. Using the 
correspondence with the Ising model equation (2.7) may be rewritten as the average 
of the product of Ising spins inside the loop: 

and the leading term in the high-temperature expansion is given by all possible pairings 
of the A,- interior spins with nearest neighbour bonds. This is nothing else than the 
dimer problem on the loop (Kasteleyn 1961, Temperley and Fisher 1961). Since Ar /2  
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dimers are required, we get 

G(T) = KAr(tanh (2.10) 

where K is the dimer partition function per site. Using standaid methods, the leading 
term in the low-temperature expansion reads 

G(T) -- exp[-2 exp(-8p,)Ar]. (2.11) 

Let us now consider the mixed action S(P,, P,) (equation (1.5)) which is the ZD 
version of the action studied by Bhanot et a1 (1983). Using the dual Ising spin 
representation of the frustration (equation (2.2)), the partition function of the mixed 
action model may be written as 

(2.12) 

so that the mixed action model is equivalent to an Ising model with nearest neighbour 
interaction p, in an external field Pp breaking the global spin reflection symmetry. 
This correspondence will be useful in the study of the stability of the Ising critical 
point in the gauge plus matter theory (§  4). 

3. Self-duality of the gauge plus matter theory 

The partition function of the gauge plus matter theory is invariant under the unitary 
gauge transformation (equation (1.3) with si = ui)  and reads 

z ( P m ,  PJ = C C exp[S(Pm, PJI = 2N C n exp(PmAij) n exp(PgAou)* (3.1) 
( U )  { A )  { A )  ( i i )  00 

Introducing new variables t ,  and t ,  = 0 , l  associated with links and windows and using 
the identity (Savit 1980) 

where 

we get 
Cr(P) =cosh P exp[t ln(tanh P ) ]  (3.3) 

where t ,+Ct ,  are the t variables for links and windows involving the link variable 
A, (figure 2(a)). Summing over A, for each link (ij), 

The Kronecker delta functions are automatically satisfied by the following representa- 
tion of the t variables (figure 2 ( b ) ) :  
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Figure 2. ( a )  Windows and links involving the link variable A,r ( b )  Representation of 
the f ,  and I, variables. 

where Vii is an Ising link variable and Vu, a product of V link variables around a 
window of the original lattice. Then, using equation (3.3), 

= (sinh 2 P m  sinh 2PJNZ(6,, 6,). (3 .8 )  

The dual couplings satisfy - 
exp(-2P,) = tanh p,, 
exp(-2bg) = tanh pm. 

(3.9) 

(3.10) 

The model is self-dual; links and windows are exchanged in the duality transformation. 
The line Pm=O is transformed into the line & = C O  and the pure gauge critical point 
( p ,  = pc, Pm = 0) gives a new critical point ( P ,  = CO, Pm = Pc) .  

When p, = a3 the gauge degrees of freedom are frozen into a state with U,, = 1 
on each window. In terms of frustration variables (figure 1) 

(3.11) 

so that the constraints may be satisfied either with a fully frustrated state ( U, = - 1 V U )  
or with an unfrustrated state ( U ,  = + 1 VU). The matter part of the action favours 
the unfrustrated state which is realised for all non-vanishing Pm. Choosing a gauge 
where all the links are in the state U,, = + 1, we get a ferromagnetic Ising model and 
the point ( p ,  = CO, Pm = pc) is the Ising critical point. When Pm = 0 we recover the two 
degenerate ground states of the low-temperature phase of the pure gauge model with 
all the plaquettes either in the state U, = + 1 (unfrustrated state) or in the state 
U, = - 1 (fully frustrated state). 

Uz2( ijklmn) = Ucl( ijmn) Vu( jklm) 

4. Mixed gauge action and stability of the critical points when pp > 0 

Following Wegner (Wegner 1971, Fradkin and Shenker 1979) we may study the 
stability of the pure gauge critical point (p,= Pc, Pm =0) in the gauge plus matter 
theory by looking for an effective action at small p,. This effective action is obtained 
by summing over the spin degrees of freedom in exp S(p,,  p,). Then 

(4.1) 
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may be evaluated near the pure gauge line through a high-temperature expansion of 
the first exponential: 

exp[Serr(Pm, Pg)1=2N(cosh P m I Z N  exp Pg C UOD (tanh P m ) L ( g )  n V, 
( i j ) c g  

(4.2) 
( 00 ) { g ,  

where the last sum is over the Ising graphs {g}, L ( g )  is the number of links in g and 
the product is over the link variables in g. For small p, the leading term is 1 
corresponding to L(g)  = 0, then come the plaquette graphs with four links around a 
plaquette, then the window graphs with six links around a window so that 

exp[SedPm, PJl 

O C  

(4.3) 

Exponentiating the last bracket, the window correction renormalises pg whereas the 
plaquette correction introduces a symmetry-breaking term in the effective action: 

Using the correspondence with the Ising model in an external field, we see that the 
pure gauge critical point does not give rise to a critical line in the (pg, p,) plane (figure 
3). The same is true of the Ising critical point on the line p, = CO by duality. 

tanh ps 

Figure 3. Phase diagram of the generalised gauge plus matter theory. A, C and G are  
king critical points. The average frustration increases from zero to one between A and 
B, remains equal to one along BCDE and vanishes along EFGA. The staggered frustration 
is maximum along EF and decreases to  zero between F and G.  The critical line GE 
separates a phase with staggered frustration from another with uniform frustration. 

The line p, = 0, P, > /3, is rather particular; when P, = 0, there are two degenerate 
ground states with (U,) positive or negative, but for real Pm only the state with 
(U,) > 0 may be reached in the limit p, + 0, or p, + 0- since P,  enters the symmetry- 
breaking term through tanh4 &. A first-order transition may occur along this line 
only in a complex & field. 
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5. Negative flg sector of the phase diagram 

The p,<O self-dual pure gauge model (equation (2.1)) may be transformed into the 
pg > 0 model through a chessboard transformation under which frustrations change 
sign on a chessboard sublattice (figure 4). It follows that the ( p ,  = - p,, p, = 0) point 
is also an king critical point. When lp,l> p, a non-vanishing average staggered 
frustration is obtained corresponding to the staggered magnetisation in the Ising model. 

Figure 4. Chessboard frustration configuration. In the chessboard Ising model the heavy 
links are  antiferromagnetic. 

This state in which the average frustration is zero does not spontaneously break the 
spin reflection symmetry but only the two sublattices symmetry. As a consequence 
for small p, the plaquette term in the effective action no longer destroys the transition 
and, like in the antiferromagnetic Ising model in a uniform external field, we get a 
second-order Ising critical line in the (p,, p,) plane. The critical line of the antiferro- 
magnetic Ising model is not known exactly. An approximate expression has been 
obtained by Muller-Hartmann and Zittartz ( 1977) for which the interfacial tension 
associated with particular interface configurations vanishes. It reads 

cosh pp = sinh’ 2p,, P,  < 0, (5.1) 

pp = tanh4 p, (5.2) 

with our notations for the mixed action theory. Near the pure gauge line we know 
from equation (4.4) that 

and combining this with the Muller-Hartmann-Zittartz result we get the approximate 
critical line near Pm=O (figure 3). 

The self-duality of the gauge plus matter theory cannot be used to study the p, < 0 
sector since it maps the pure gauge line ( P , = O , P , < O )  onto the line ( p g = ~ , p ,  
complex). Anyway we know that when pg+ -CO, the U,, must be frozen in the state 
-1 corresponding to two degenerate chessboard configurations for the frustrations 
(figure 4). Using a gauge where the heavy links in figure 4 are equal to -1, we get 
the chessboard Ising model (Andre et al 1979) which is known to have no transition. 
The critical line starting at (ps = - Pc. pm = 0) is expected to end at ( p ,  = -CO, Pm = +CO) 

and to remain an Ising critical line since taking into account higher-order terms in the 
effective action (equation (4.4)) amounts to including irrelevant multispin terms in the 
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antiferromagnetic Ising model and the line Pe = -a has the same frustration symmetry 
as the low-temperature phase of the pure gauge theory. 

To conclude let us briefly mention that further generalisation of the 2~ gauge 
invariant Ising model involving gauge terms with n X 1 windows ( n  > 2 )  will have Ising 
spin formulations with multispin interactions. For n large enough these self-dual 
models are known to have a first-order transition (Turban 1982, Turban andDebierre 
1982, Debierre and Turban 1983, Penson et a f  1982). 
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